Algebraic Methods- Mark Scheme

Jan 2013 Mathematics Advanced Paper 1: Pure Mathematics 4

Question Number	Scheme		Marks
3.	$\frac{\text{Method 1: Using one identity}}{9x^2 + 20x - 10} \equiv A + \frac{B}{(x+2)} + \frac{C}{(3x-1)}$		
	A = 3	their constant term $= 3$	B1
	$9x^{2} + 20x - 10 \equiv A(x+2)(3x-1) + B(3x-1) + C(x+2)$	Forming a correct identity.	B1
	Either $x^2: 9 = 3A, x: 20 = 5A + 3B + C$ constant: $-10 = -2A - B + 2C$ or $x = -2 \Rightarrow 36 - 40 - 10 = -7B \Rightarrow -14 = -7B \Rightarrow B = 2$	Attempts to find the value of either one of their B or their C from their identity.	M1
	$x = \frac{1}{3} \Rightarrow 1 + \frac{20}{3} - 10 = \frac{7}{3}C \Rightarrow -\frac{7}{3} = \frac{7}{3}C \Rightarrow C = -1$	Correct values for their <i>B</i> and their <i>C</i> , which are found using a correct identity.	Al
	$\frac{\text{Method 2: Long Division}}{9x^2 + 20x - 10} \equiv 3 + \frac{5x - 4}{(x + 2)(3x - 1)}$ So, $\frac{5x - 4}{(x + 2)(3x - 1)} \equiv \frac{B}{(x + 2)} + \frac{C}{(3x - 1)}$	their constant term = 3	B1
	$5x - 4 \equiv B(3x - 1) + C(x + 2)$	Forming a correct identity.	B1
	Either x: $5 = 3B + C$, constant: $-4 = -B + 2C$ or $x = -2 \Rightarrow -10 - 4 = -7B \Rightarrow -14 = -7B \Rightarrow B = 2$	Attempts to find the value of either one of their <i>B</i> or their <i>C</i> from their identity.	M1

	$x = \frac{1}{3} \Rightarrow \frac{1}{3} - 4 = \frac{1}{3}C \Rightarrow \frac{1}{3} = \frac{1}{3}C \Rightarrow C = -1$	Correct values for heir B and their C, which are found using $x - 4 \equiv B(3x - 1) + C(x + 2)$	Al
	So, $\frac{9x^2 + 20x - 10}{(x+2)(3x-1)} \equiv 3 + \frac{2}{(x+2)} - \frac{1}{(3x-1)}$		[4] 4
	NOTE: This question appears as B1M1A1A1 on ePEN, but is no BE CAREFUL!: Candidates will assign <i>their own</i> " <i>A</i> , <i>B</i> and <i>C</i> " 1 st B1: Their constant term must be equal to 3 for this mark. 2 nd B1: Forming a correct identity. This can be implied by later will assign <i>their own</i> " <i>A</i> , <i>B</i> and <i>C</i> " A1: Attempts to find the value of either one of their <i>B</i> or their <i>C</i> either substituting values into their identity or comparing coefficient simultaneously. A1: Correct values for their <i>B</i> and their <i>C</i> , which are found using Note and beware: A number of candidates who write $\frac{9x^2 + 20x}{(x+2)(3x)}$ $9x^2 + 20x - 10 \equiv A(3x-1) + B(x+2)$, leading to $A = 2$ and $B = 2$ attempting to find either their <i>A</i> or their <i>B</i> from $9x^2 + 20x - 10 \equiv 4$.	for this question. vorking. from their identity. This can be ents and solving the resulting of a correct identity. $\frac{-10}{(x-1)} \equiv \frac{A}{(x+2)} + \frac{B}{(3x-1)}, 1$ -1 will gain a maximum of B	e achieved by equations eading to
	Note: The correct partial fraction from no working scores B1B1N Note: The final A1 is effectively dependent upon the second B1.	41A1.	
3. ctd	Note: You can imply the 2 nd B1 from either $\frac{9x^2 + 20x - 10}{(x+2)(3x-1)} \equiv \frac{A}{(x+2)(3x-1)}$ or $\frac{5x-4}{(x+2)(3x-1)} \equiv \frac{B(3x-1) + C(x+2)}{(x+2)(3x-1)}$	$\frac{A(x+2)(3x-1) + B(3x-1) + C}{(x+2)(3x-1)}$	$\frac{1}{2}(x+2)$
	Alternative Method 1: Initially dividing by $(x + 2)$ $\frac{9x^{2} + 20x - 10}{"(x + 2)"(3x - 1)} \equiv \frac{9x + 2}{(3x - 1)} - \frac{14}{(x + 2)(3x - 1)}$ $\equiv 3 + \frac{5}{(3x - 1)} - \frac{14}{(x + 2)(3x - 1)}$ So, $\frac{-14}{(x + 2)(3x - 1)} \equiv \frac{B}{(x + 2)} + \frac{C}{(3x - 1)}$	B1: their constant term = 3	
	$-14 \equiv B(3x-1) + C(x+2)$ $\Rightarrow B = 2, C = -6$ So, $\frac{9x^2 + 20x - 10}{(x+2)(3x-1)} \equiv 3 + \frac{5}{(3x-1)} + \frac{2}{(x+2)} - \frac{6}{(3x-1)}$	B1: Forming a correct ident M1: Attempts to find either <i>B</i> or their <i>C</i> from their ident	one of their
	and $\frac{9x^2 + 20x - 10}{(x+2)(3x-1)} \equiv 3 + \frac{2}{(x+2)} - \frac{1}{(3x-1)}$	A1: Correct answer in parti	al fractions.

Alternative Method 2: Initially dividing by
$$(3x - 1)$$

$$\frac{9x^{2} + 20x - 10}{(x + 2)"(3x - 1)"} \equiv \frac{3x + \frac{23}{3}}{(x + 2)} - \frac{\frac{7}{3}}{(x + 2)(3x - 1)}$$

$$\equiv 3 + \frac{\frac{5}{3}}{(x + 2)} - \frac{\frac{7}{3}}{(x + 2)(3x - 1)}$$
B1: their constant term = 3
So, $\frac{-\frac{7}{3}}{(x + 2)(3x - 1)} \equiv \frac{B}{(x + 2)} + \frac{C}{(3x - 1)}$

$$= \frac{B}{(x + 2)} + \frac{C}{(3x - 1)}$$
B1: Forming a correct identity.

$$\Rightarrow B = \frac{1}{3}, C = -1$$
B1: Forming a correct identity.

$$\Rightarrow B = \frac{1}{3}, C = -1$$
B1: Attempts to find either one of their B or their C from their identity.
So, $\frac{9x^{2} + 20x - 10}{(x + 2)(3x - 1)} \equiv 3 + \frac{\frac{5}{3}}{(x + 2)} + \frac{\frac{1}{3}}{(x + 2)} - \frac{1}{(3x - 1)}$
A1: Correct answer in partial fractions.

June 2011 Mathematics Advanced Paper 1: Pure Mathematics 4

2.

Question Number	Scheme			Marks	
1.	9 <i>x</i> ² =	$= A(x-1)(2x+1) + B(2x+1) + C(x-1)^{2}$		B1	
	$x \rightarrow 1$	$9 = 3B \implies B = 3$		M1	
	$x \rightarrow -\frac{1}{2}$	$\frac{9}{4} = \left(-\frac{3}{2}\right)^2 C \implies C = 1$	Any two of A , B , C	A1	
		$9 = 2A + C \implies A = 4$	All three correct	A1	(4
	Alternatives for finding A.				[4
		$0 = -A + 2B - 2C \implies A = 4$ rms $0 = -A + B + C \implies A = 4$			

Question Number	Scheme	Marks	
5.	(a) $A = 2$ $2x^2 + 5x - 10 = A(x-1)(x+2) + B(x+2) + C(x-1)$	B1	
	$\begin{array}{ccc} x \to 1 & -3 = 3B \implies B = -1 \\ x \to -2 & -12 = -3C \implies C = 4 \end{array}$	M1 A1 A1	(4
	(b) $\frac{2x^2 + 5x - 10}{(x-1)(x+2)} = 2 + (1-x)^{-1} + 2\left(1 + \frac{x}{2}\right)^{-1}$	M1	
	$(1-x)^{-1} = 1 + x + x^2 + \dots$	B1	
	$\left(1+\frac{x}{2}\right)^{-1} = 1-\frac{x}{2}+\frac{x^2}{4}+\ldots$	B1	
	$\frac{2x^2 + 5x - 10}{(x-1)(x+2)} = (2+1+2) + (1-1)x + \left(1 + \frac{1}{2}\right)x^2 + \dots$	М1	
	$= 5 + \dots \qquad \qquad \text{ft their } A - B + \frac{1}{2}C$	A1 ft	
	$= \dots + \frac{3}{2}x^2 + \dots$ 0x stated or implied		(7) [11

June 2010 Mathematics Advanced Paper 1: Pure Mathematics 4

3.